Machine Learning The Big Picture and Data

Michael Claudius, Associate Professor, Roskilde

29.08.2021

Machine Learning Project

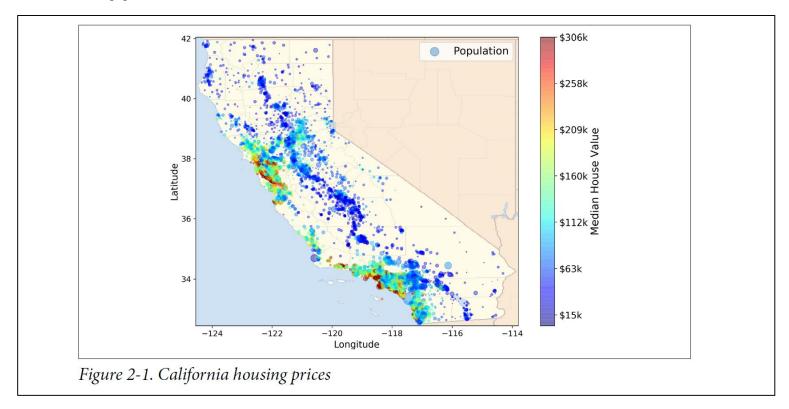
- Machine Learning has a number of phases
- The phases can be overlapping and/or iterative
 - 1. Look at the big picture.
 - 2. Get the data.
 - 3. Discover and visualize the data to gain insights.
 - 4. Prepare the data for Machine Learning algorithms.
 - 5. Select a model and train it.
 - 6. Fine-tune your model.
 - 7. Present your solution.
 - 8. Launch, monitor, and maintain your system.
- A detailed checklist is given on <u>ML Management Checklist (PDF)</u>
- Remember always adapt the order and the checklist to your needs

Machine Learning: The big picture and data

- It is about understanding business and the data!
- 1. The context
- 2. Frame the problem
- 3. Select performance measure
- 4. Setup workspace
- 5. Get the data in hand
- 6. Explore the data tables
- 7. Create a test set
- 8. Visual graphs and correlations
- 9. Experiment with attribute combinations

The context: Housing prices

- California median housing price for a block group
- Block group: unit population of 600-3.000 people
- Data size app. 20.000



Frame the problem

- Purpose of the output. Interview the stakeholders
 - Predict housing price to be used by investment company
- ML Types (Student discussion)
 - Supervised or unsupervised
 - Regression (values) or classification (category)
 - Multiple features or not
 - Univariant (one value) or multivariate (predict several values)
 - Online or batch

Performance measure

- Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)
- RMSE: higher weight to outliners (normal choice)
- MAE: to be used if many outliners

RMSE(
$$\mathbf{X}, h$$
) = $\sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(h(\mathbf{x}^{(i)}) - y^{(i)} \right)^2}$

$$MAE(\mathbf{X}, h) = \frac{1}{m} \sum_{i=1}^{m} \left| h(\mathbf{x}^{(i)}) - y^{(i)} \right|$$

RMSE formula explained

Notations

This equation introduces several very common Machine Learning notations that we will use throughout this book:

- *m* is the number of instances in the dataset you are measuring the RMSE on.
 - For example, if you are evaluating the RMSE on a validation set of 2,000 districts, then m = 2,000.
- $\mathbf{x}^{(i)}$ is a vector of all the feature values (excluding the label) of the i^{th} instance in the dataset, and $y^{(i)}$ is its label (the desired output value for that instance).
 - For example, if the first district in the dataset is located at longitude –118.29°, latitude 33.91°, and it has 1,416 inhabitants with a median income of \$38,372, and the median house value is \$156,400 (ignoring the other features for now), then:

$$\mathbf{x}^{(1)} = \begin{pmatrix} -118.29 \\ 33.91 \\ 1,416 \\ 38,372 \end{pmatrix}$$

and:

$$y^{(1)} = 156,400$$

RMSE formula explained

- X is the matrix with all features of all instances
- The label y not included!
 - **X** is a matrix containing all the feature values (excluding labels) of all instances in the dataset. There is one row per instance, and the i^{th} row is equal to the transpose of $\mathbf{x}^{(i)}$, noted $(\mathbf{x}^{(i)})^{\mathsf{T}}$.
 - For example, if the first district is as just described, then the matrix **X** looks like this:

$$\mathbf{X} = \begin{pmatrix} (\mathbf{x}^{(1)})^{\mathsf{T}} \\ (\mathbf{x}^{(2)})^{\mathsf{T}} \\ \vdots \\ (\mathbf{x}^{(1999)})^{\mathsf{T}} \\ (\mathbf{x}^{(2000)})^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} -118.29 & 33.91 & 1,416 & 38,372 \\ \vdots & \vdots & \vdots & \vdots \\ & \vdots & \vdots & \vdots \end{pmatrix}$$

RMSE formula explained

- h is the hypothesis function e.g. a linear regression
- $h(X) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_n X_n$
- RMSE(X,h) is the cost function i.e. the performance measure
 - h is your system's prediction function, also called a *hypothesis*. When your system is given an instance's feature vector $\mathbf{x}^{(i)}$, it outputs a predicted value $\hat{y}^{(i)} = h(\mathbf{x}^{(i)})$ for that instance (\hat{y} is pronounced "y-hat").
 - For example, if your system predicts that the median housing price in the first district is \$158,400, then $\hat{y}^{(1)} = h(\mathbf{x}^{(1)}) = 158,400$. The prediction error for this district is $\hat{y}^{(1)} y^{(1)} = 2,000$.
 - RMSE(\mathbf{X} ,h) is the cost function measured on the set of examples using your hypothesis h.

We use lowercase italic font for scalar values (such as m or $y^{(i)}$) and function names (such as h), lowercase bold font for vectors (such as $\mathbf{x}^{(i)}$), and uppercase bold font for matrices (such as \mathbf{X}).

Get the data

- Download the data
- Housing data already installed in the Github project
- · Always create a local copy to work on
- Explained later in an exercise
- Take a Look at the HousingTest Code

Set up workspace

- Anaconda with Jupyter
- Explained in an exercise

Explore the data attributes

Check the first 5 rows using head() method

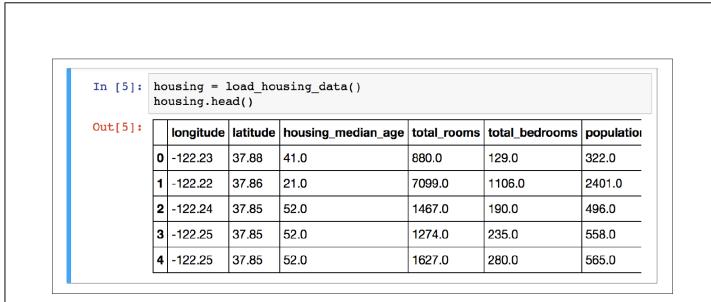


Figure 2-5. Top five rows in the dataset

Explore the data types

Look at the data type using the info() method

```
In [6]: housing.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 20640 entries, 0 to 20639
          Data columns (total 10 columns):
          longitude
                                20640 non-null float64
                                20640 non-null float64
          latitude
          housing median age
                                20640 non-null float64
                                20640 non-null float64
          total rooms
          total bedrooms
                                20433 non-null float64
          population
                                20640 non-null float64
          households
                                20640 non-null float64
          median income
                                20640 non-null float64
          median house value
                                20640 non-null float64
          ocean proximity
                                20640 non-null object
          dtypes: float64(9), object(1)
          memory usage: 1.6+ MB
Figure 2-6. Housing info
```

Explore the data statistics

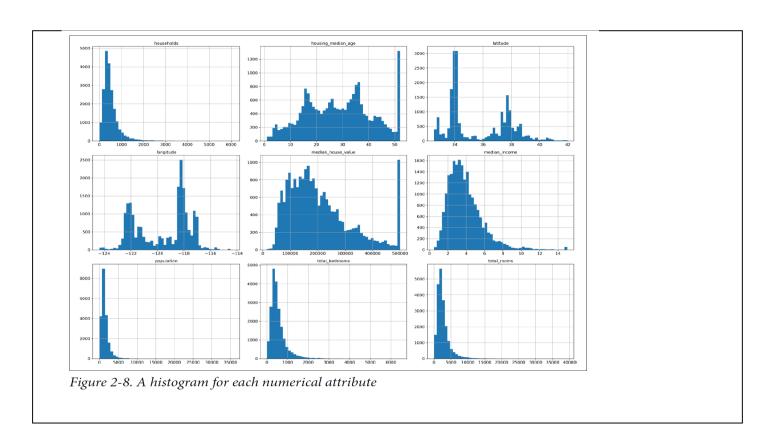
Make a summary of numerical attributes using the describe() method

[n [8]: h	ousir	ng.describe()						
Out[8]:		longitude	latitude	housing_median_age	total_rooms	total_bedro			
C	count	20640.000000	20640.000000	20640.000000	20640.000000	20433.0000			
ī	mean	-119.569704	35.631861	28.639486	2635.763081	537.870553			
•	std	2.003532	2.135952	12.585558	2181.615252	421.385070			
r	min	-124.350000	32.540000	1.000000	2.000000	1.000000			
2	25%	-121.800000	33.930000	18.000000	1447.750000	296.000000			
	50%	-118.490000	34.260000	29.000000	2127.000000	435.000000			
7	75%	-118.010000	37.710000	37.000000	3148.000000	647.000000			
Ī	max	-114.310000	41.950000	52.000000	39320.000000	6445.00000			

Figure 2-7. Summary of each numerical attribute

Explore the data distribution

Make a summary of numerical attributes using the describe() method



Explore the data anomalies

- Notice anomalies like:
 - Capped values like median house income, house age and house value
 - Heavy tail distribution
 - Very different scale a summary of numerical attributes using the describe() method
- These issues might cause problems for some ML algorithms
- To be discussed later

Create a test set by random sampling

- Normally training set is 80%. Test set is 20% of the total data set
- Test set a can be sampled random
 - If you want the same test set each time use seed(42) function or

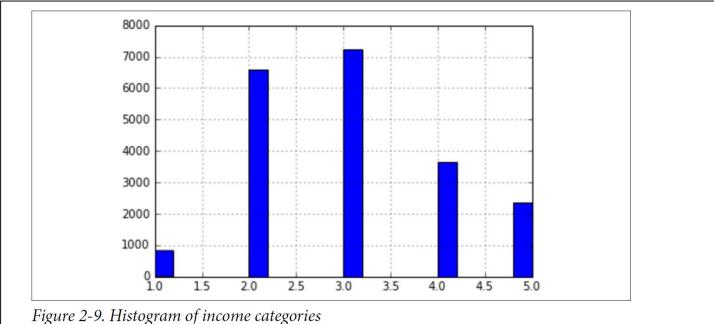
```
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
```

- Disadvantage of random: what about if new data coming later
- Solution: take them into the data set and the training set using a special identifier
 - Speciel Identifier: Unique ID, Row no, Latitude & longitude
- Disadvantage of random: might lead to a skewed test data set not representing original data distribution
 - E.g. male/female distribution 49%/51%
- Solution: Test set can be sampled stratified

Create a test set by stratified sampling

- Assume median income must be representative in test set
- Create an income category 1, 2 3 4 5 and use it for the data split

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)



Sampling bias comparison

- Random versus stratified
- Stratified represents better!

	Overall	Stratified	Random	Rand. %error	Strat. %error
1	0.039826	0.039729	0.040213	0.973236	-0.243309
2	0.318847	0.318798	0.324370	1.732260	-0.015195
3	0.350581	0.350533	0.358527	2.266446	-0.013820
4	0.176308	0.176357	0.167393	-5.056334	0.027480
5	0.114438	0.114583	0.109496	-4.318374	0.127011

Figure 2-10. Sampling bias comparison of stratified versus purely random sampling

Exercises

- It is time for looking at Housing code, discussion, coding your own linear regression
- Finally, you will make a housing project !!
- Python Basic No. 2
- Linear Regression
- Housing Ch. 2 No. 1

